•	Subject Code	Subject Name	Category	L	Т	P	S	Credits		Marks	
									CIA	External	Total
	23BCAA1	DIGITAL LOGIC	Elective	3	-	-	-	3	25	75	100
_		FUNDAMENTALS	Course 1								
	601		rse Object				1 1	N. '4 11 '			
_	CO1	To introduce the fundamenta									
	CO2	To understand Boolean algebrased				1 B1	nary	arithmetic	e opera	tions.	
	CO3	To get exposure to combinat									
	CO4	To understand the concept o	f sequential	logi	c ar	ıd fl	ipflo	pps			
	CO5	To study the design of count	ers and unde	ersta	nd	the	mem	ory types.			
			Со	ntei	ıts						No. of Hours
	UNIT I	NUMBER SYSTEMS AND Number Systems and Codes Code Conversion. Digital Lo	: Number Sy	sten	n –	Bas					15
	UNIT II	BOOLEAN ALGEBRA Boolean Algebra: Laws and Boolean Functions – Using ' Arithmetic: Binary Addition Numbers – Arithmetic Build	Theorems, K n – Subtrac	C-Ma tion	ap, –	Prin Var	ne – ious	Implicant Represen	Metho	d – Binary	15
	UNIT III	COMBINATIONAL LOG Combinational Logic: Mult Code Converters – Parity Ge	tiplexers – 1					– Decode	ers – E	Encoders –	15
	UNIT IV	SEQUENTIAL LOGIC Sequential Logic: RS, JK Registers: Shift Registers – '						Master-S	Slave 1	Flip-Flops.	15
	UNIT V	COUNTERS AND MEMO Counters: Asynchronous an Counters— Ring Counters. I Types of RAMs.	nd Synchroi						ypes o	f ROMs –	75
		<u> </u>	4							al Hours	
СО	On acm-1-4:	on of this course, students v							rrogr	amme Out	come
1	-	gic gates and their functional							PC	01, PO3,PO)5
2		er conversions from one syst		er sv	ste	m.		P	O2. PC	03, PO6, PO	7
3		e functions of combinational		· · · · · · ·						3, PO4, PO	
4		er conversions.								04, PO5, PO	
5		ter design and learn its operate	tions.							PO7, PO8	
	1		Text Book	ζ.				l .			
1	D.P.Leach and	l A.P.Malvino, Digital Princi	ples and App	olica	tio	ns –	TM	H – Fifth 1	Edition	<i>−</i> 2002.	
	•		eference Bo								
1.	V.Rajaraman a	and T.Radhakrishnan, Digital	Computer I)esi	gn,	Prei	ntice	Hall of I	ndia, 20	001	
2.	M. Moris Man	o, Digital Logic and Comput	er Design, P	HI,	200)1.					
	T.C.Bartee, D	igital Computer Fundamental	s, 6th Editio	n, T	ata	Mc	Grav	v Hill, 199	01.		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	S	S	S	S	S	M	S	M
CO2	S	S	S	M	S	S	M	S
CO3	S	S	S	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S

 $\begin{array}{l} PO-Programme\ Outcome,\ CO-Course\ outcome\\ S-Strong,\ M-Medium,\ L-Low \end{array}$

Subject Code	Subject Name	Catego	L	T	P	S	Credits			
		ry						CIA	External	Total
23BCAAP1	Digital Principles & Computer Organization -LAB	Allied Lab	-	1	2	-	2	25	75	100

Course Objectives:

- To Understand the Digital Electronics Practically
 To know how to solve gates and other functions.
- 3. To create Boolean laws.
- 4. Be able to work with flip-flops.
- 5. Be able to build multiplexer and de-multiplexer.

LAB EXERCISES									
	LAB EXERCISES	Required							
		Hours							
AND,OR	andN OTGateusing Truth Table	60							
Universal	ityofNAN D&NORgates.								
Verification	on ofBooleanlawsusingNANDgates (AssociativeCommutative&DistributiveLaws)								
VerifyDe-	Morganstheorem								
Verification	onofBooleanlawsusingNORgates(Associative,Commutative&DistributiveLaws)								
SumofPro	ductsusingNANDgatesandProductofSums usingNORGates.								
4-bitbinar	yparall eladderandSubtractorIC7483								
Counterus	singIC7473								
StudyofR	S,D,TandJKFlip-FlopswithIC's.								
StudyofE	ncoder&Decoder.								
StudyofM	Iultiplexer&De-Multiplexer.								
Half and	Full AdderusingSimple&NANDGates.								
HalfandF	ullSubtractorusingSimple&NANDGates.								
	Course Outcomes								
	On completion of this course, students will								
CO1	Demonstrate the understanding of digital electronics								
CO2	Identify the problem and solve using gates and other functions.								
CO3	Identify suitable programming Boolean laws.								
CO4	Learners can be work with flip-flops.								
CO5	Develop multiplexer and de-multiplexer.								

Mapping with Programme Outcomes:

mapping with riveran	ime Outeo	iiics.				
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	2	2	3	2
CO2	2	1	3	2	-	2
CO3	3	3	1	1	1	2
CO4	2	3	3	1	-	1
CO5	3	2	3	1	1	-
Weightage of course	12	11	12	7	5	7
contributed to each PSO						

M-Medium-2 L-Low-1 S-Strong-3

								T4		Marks	
Subject Code	Subject Name	Category	L	Т	P	S	Credits	Inst. Hours	urs CIA Exter	External	Total
23BCAA2	Resource Management Techniques	Allied	3	-	-	-	3	3	25	75	100
		Cours	e Obj	ectiv	'e					•	
CO 1	Describe the fundamental	concepts of o	perati	ions r	esea	rch	and linear	prograi	nming	concepts.	
CO 2	Understand the mathemati	cal formulati	on an	d opt	imal	ity 1	test.				
CO 3	Describe the concept of transhipment problem and assignment problem.										
CO 4	Classify the sequencing problems.										
CO 5	Demonstrate the use of ne		ıling t	у РЕ	RT/0	CPN	M.				
			Deta	ails							No. of Iours
	Basics of Operations Research: Introduction – Scope of Operations Research – Phases of Operations Research - Linear Programming: Introduction – Formulation of LP Problems – Graphical Method: Procedure for Solving LPP by Graphical Method.										
UNIT I	of Operations Research -	Linear Pro	gram	ming	: În	troc	łuction –	Formul	ation		6
UNIT I	of Operations Research - Problems - Graphical Me Transportation Problems Optimal Solution - North-	Linear Prosection Proceeds: Introduction West Corner	gramı lure fo n – N Rule	ming or Sol Mathe – Le	lving	troc LP ical	P by Grap Formula t or Matri	Formul phical M tion – I x Minin	ation (ethod.	of LP	6
	of Operations Research - Problems – Graphical Me Transportation Problems	Linear Prost thod: Proced Introduction West Corner thod – Opting Inment Prol Hungarian M	gram lure for n – N Rule nality olems Metho	ming or Sol Mathe - Le Test : Into	lving emati east (- M roduc	troc LP ical Cos OD	Formula t or Matri Method Tran	Formul bhical Matter tion — It is Mining	ethod. Definitina Met	ons – chod –	Ů
UNIT II	of Operations Research - Problems – Graphical Me Transportation Problems Optimal Solution – North- Vogel's Approximation Me Transhipment and Assig Assignment Problem – Problem- Maximization in Sequencing Problems: I Principal Assumptions – Ty Processing n Jobs through	Linear Propertion Proceeds: Introduction West Corner ethod – Optimal Propertion Propertion Propertion Production Production Propertion Problem Introduction Propertion Problem Introduction Propertion Problem Introduction In	n - Market Rule nality olems Metho Proble - De ms wines A	Mathe — Let — Test : Interest in the Interest in I	ematicast (- M roductorocco on - Jobs C - T	trock LP ical Cos OD ctio dure Tthro	Formula t or Matri Method n — Tran e — Unba	Formul bhical Machine In the shipmen alanced In the shipmen alanced In the shipmen In the shipme	ation ethod. Definitina Met t Prob Assign Notati es – Ty	ons – chod – lem – nment ons – ype II:	6
UNIT III	of Operations Research - Problems - Graphical Me Transportation Problems Optimal Solution - North- Vogel's Approximation Me Transhipment and Assig Assignment Problem - Problem- Maximization in Sequencing Problems: I Principal Assumptions - T	Linear Programment Proluction West Corner ethod – Opting Imment Prolumgarian Massignment introduction type I: Problems with 2 PERT/CPM: suction – Number 1 Properties of the p	n - N Rule nality Dlems Metho Proble - De ms wi nes A Lobs Intro	Mathe — Le Test: Intiod Prem. efinitiath n., B, C	ematicast (- M roductorocco on - Jobs C - T igh k ion -	ical Cos OD ctio	Formula t or Matri I Method n - Tran c - Unba Terminologough Two e III: Probachines.	Formul bhical Matter I ion — I ion — I ion — I ion	ethod. Definitina Met t Prob Assign Notati es – Tyth n John mon En	ons – chod – lem – nment ons – vpe II: os and errors -	6

	Course Outcomes	Programme Outcome
CO	Upon completion of the course the students would be Able to:	
CO 1	Remember the fundamental concepts of operations research and linear programming concepts.	PO1, PO6
CO 2	Understand the mathematical formulation and optimality test.	PO2
CO 3	Apply the concept of transhipment problem and assignment problem	PO4, PO7
CO 4	Analyze the sequencing problems.	PO6
CO 5	Understand the use of network scheduling by PERT/CPM.	PO7, PO8

	Text Book
1	S.D. Sharma, Operations Research (Theory, Method & Applications) - Kedar Nath Ram Nath
	& Co – 1997.
	Reference Books
1.	Hamdy A. Taha, Operations Research- An Introduction, Pearson Education, 10 th Edition, 2019.
2	Frederick S. Hillier, Gerald J. Lieberman et al., Introduction to operations Research, 11 th
	Edition, TATA McGraw Hill, 2021
	Web Resources
1.	https://www.mooc-list.com/tags/operations-research

S-Strong-3 M-Medium-2L-Low-1

S-Strong	<i>-</i>	DCO2		DCO 4	DCO.	DCCC
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed						
to each PSO	12	9	6	5	6	4

								Inst.		Marks	
Code	Subject Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
23BCAA P2	Resource Management Techniques Lab (Using C/C++/Python)	Allied Lab	-	-	2	-	2	2	25	75	100
001	D '1 (1 1)	Cour)bjec	tive						
CO1	Describe the linear programm										
CO2	Understand the basic function				ble r	egio	n.				
CO3	Describe the concept of north										
CO4	Classify the Vogel's approxi	mation rule	and	assig	nmei	nt pro	blem.				
CO5	Demonstrate the job sequence	ing problen	n and	netw	vork	sche	duling by	PERT/C	PM.		
S. No		List of Lal) Pro	gran	ns					No. of H	lours
1	Write a program to formulate	the Linear I	Progr	amm	ing N	Mode	1			30	
2	Write a Program to represent	the feasible	regio	n gra	phic	ally					
3	Write a program to Implemen	t the North-	West	Con	ner R	ule					
4	Write a program to implement	t the Vogel'	s Ap	proxi	mati	on m	ethod				
5	Write a program to implement	t the assignr	nent	prob	lem						
6	Write a program to implement	t the Hungar	rian l	Meth	od						
7	Write a program to implement	t Job sequer	ncing	Prob	lem						
8	Write a program to implement	t the Netwo	rk Sc	hedu	ling	by Pl	ERT/CPM	[
		urse Outco								Progra: Outco	
CO	Upon completion of the cour			vould	be a	ble t	0:				
CO1	Remember the linear program	_								PO1, PO	6
CO 2	Understand the programming						feasible r	egion		PO2	
CO 3	Apply the programming con-									PO4, PO	7
CO 4	Analyze the Vogel's approxi									PO6	
CO 5	Know the job sequencing pro					ling	by PERT/	CPM.		PO7, PO	8
				Book							
1	S.D. Sharma, Operations Reseated 1997.	Ì				Appl	ications)	- Kedar	Nath I	Ram Nath	& Co –
1	TI 1 A TI 1 O	Refe				D	F 1	. 10	th 17 11.	. 2010	
	Hamdy A. Taha, Operations R				,			ŕ		ŕ	
2.	Frederick S. Hillier, Gerald J. TATA McGraw Hill, 2021	Lieberman	et al.	, Intr	oduc	tion	to operation	ons Rese	earch,	11 th Editio	n,
				sour							
1.	https://www.mooc-list.com/t	ags/operation	ons-r	esear	<u>ch</u>						

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

S-Strong-3 M-Medium-2L-Low-1

Illustration for B.C.A. Allied Paper II Year – Semester – III & IV

C bind								T 4		Marks	
Subject Code	Subject Name	Category	L	Т	P	S	Credits	Inst. Hours	CIA	External	Total
23BCAA3	Discrete Mathematics	Allied	3	-	-	-	3	3	25	75	100
		Cours	e Obj	ectiv	e				l		
CO 1	Describe the fundamental con	cepts of set t	heory	, func	ctions	s ar	nd relation	S.			
CO 2	Understand the mathematical formulation, Conditional Statements, Atomic and Compound St							ound State	ements.		
CO 3	Describe the concept and Prin	ciples of No	rmal I	Form	s, Th	eor	y of Infer	ence.			
CO 4	Classify the insights of graph	theory.									
CO 5	Demonstrate the trees and Bo	olean algebra	a.								
UNIT			Detai	ls							No. of Hours
UNIT I	Fundamental Structures:- Products, Power Sets, Fini Inverses, Composition. Rel Relations.	te and Infi	nite S	Sets.	Fur	ıcti	ons:- Su	rjections	s, Inje	ctions,	6
UNIT II	Logic:- TF Statements, Cor Conditional Statements, Ator Truth Table, Tautology, Tauto	nic and Con	npoun	d Sta	iteme	ents	s, Well fo	rmed Fo	ormula	e, The	6
UNIT III	Normal Forms:- Principles Quantifiers, Valid Formulae a	of Normal	Form	s, Tł	neory	/ O	Inferenc	e, Open	State	ments,	6
UNIT IV	Graph Theory:- Definition, Degrees, Sub Graph, Isomorphism, Complete Graph, Bipartite Graph – Representation of a Graph – Adjacency Matrix.									6	
UNIT V	Trees: Spanning Tree – Kr Boolean Algebra:- Boolean					•	gorithm, I	Dijkstra'	s Algo	rithm,	6
									Tot	tal	30

	Course Outcomes	Programme Outcome					
СО	Upon completion of the course the students would be Able to:						
CO 1	Remember the fundamental concepts of set theory, functions and relations.	PO1, PO6					
CO 2	Understand the mathematical formulation Conditional Statements, Atomic and Compound Statements	PO2					
CO 3	Describe the concept and Principles of Normal Forms, Theory of Inference.	PO4, PO7					
CO 4	Analyze and Classify the insights of graph theory.						
CO 5	Understand the use trees and Boolean algebra.						
	Text Book						
1	Jean-Paul Trembly & Manohar, R. (2017). Discrete Mathematics Structures with Computer Science. Tata Mc Graw-Hill.	n Applications to					
	Reference Books						
1.	Venkataraman, M.K., Sridharan, N., & Chandrasekaran, N. (2009). <i>Discrete Mathemo</i> National Publishing co.	utics.					
	Web Resources						
1.	https://mathworld.wolfram.com/DiscreteMathematics.html						

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

S-Strong-3 M-Medium-2L-Low-1

								Inst.		Marks	
Code	Subject Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
23BCAA P3	Excel & C++ Lab for Discrete Mathematics	Allied Lab	-	-	2	-	2	2	25	75	100
		Cour		•							
CO1	CO1 To impart the knowledge about solving Logical problems										
CO2	Understand and create truth t	able using s	prea	dshee	ets.						
CO3	Understand and create spread	Understand and create spreadsheets for demorgan's theorem.									
CO4	Classify the various set opera	ations.									
CO5	Demonstrate and implement	prim's algo	rithm	ıs.							
S. No		List of Lab	Pro	gran	ns					No. of H	lours
1	Create a truth table using spr	eadsheet for	AN	D, O	R an	d NC	T function	ns.		30	
2	Create a truth table using								your	-	
3	spreadsheet's AND, OR, and NOT functions to calculate the truth value. Create a truth table, using your spreadsheet's logical functions, for the expression $((P \land 7Q) \lor (7P \land Q))$.									_	
4	Create a truth table using you	ır spreadshe	et fo	r den	norga	an's 1	heorem.			1	
5	Create a truth table using sp	•					he given	expressi	on is	_	
6	tautology or not $(P \land Q) \lor (7)$ Write a C++ Program to in						ns (union.	intersec	etion.	_	
	difference, symmetric difference	ence).			•		(0.111-0.1.)				
7	Write a C++ Program to find	•				ze n.					
8	Write a C++ program to per a) is the given relation is refl		ing c	pera	tion:						
	b) is the given relation is syn		is the	give	n rel	atior	ı is Transi	tive?			
9	Write C++ Program to imple									-	
10	Write a C++ Program to chec	ck whether a	a giv	en gr	aph i	s bip	artite or n	ot.			
	Со	urse Outco	mes							Progra: Outco	
CO	Upon completion of the cour	se the stude	nts w	vould	be a	ble t	0:				
CO1	Remember the truth table usi	ng spreadsh	eets.							PO1, PO	6
CO 2	Understand the programming problems.	g basic funct	ion a	and k	nowl	edge	about sol	lving Lo	gical	PO2	
CO 3	Apply the programming concept of spreadsheets for demorgan's theorem.									PO4, PO	7
CO 4	Analyze the various set operations and problem.									PO6	
CO 5	Know to demonstrate and im	plement pri	m's a	algor	ithms	S				PO7, PO	8
				Book							
1	Jean-Paul Trembly & Mano Computer Science. Tata Mc	Graw-Hill.				Math	ematics S	tructures	s with	Application	ons to
	-	Refe	renc	e Bo	oks						

1.	Venkataraman, M.K., Sridharan, N., & Chandrasekaran, N. (2009). <i>Discrete Mathematics</i> . National Publishing co.
	Web Resources
1.	https://mathworld.wolfram.com/DiscreteMathematics.html

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

Strong-3 M-Medium-2 L-Low-1

Subject								Inst.		Marks	KS	
Subject Code	Subject Name	Category	L	Т	P	S	Credits	Hours	CIA	Externa	Total	
23BCAA4	STATISTICS METHODS AND ITS APPLICATIONS	Allied	3	-	-	-	3	3	25	75	100	
	Course Objective									•		
CO 1	Describe the fundamental cond	cepts of colle	ecting	and j	prese	nti	ng statistic	cal data.				
CO 2	Understand the measures of ce	entral tenden	cy an	d disp	persi	on						
CO 3	Describe the concept and Mea	sures of Ske	wness	s, Ku	rtosis	s ar	nd Momen	ts.				
CO 4	Classify the insights of correlation and Concurrent deviation method.											
CO 5	Demonstrate the regression.											
UNIT			Detai	ls							No. of Hours	
UNIT I	Collection and Presentation of Statistical Data: Nature, Scope and Limitations of Statistics – Data sources – Methods of collection of statistical data – Census – Sample Survey – Measurement of Scales – Nominal, Ordinal, Interval and Ratio scales – Classification and Tabulation – Formation of frequency distribution – Cumulative frequency distribution – Diagrammatic and Graphical representation of Data.								ample ales –	6		
UNIT II	Measures of Central Tend Geometric mean and Harmon Deciles and Percentiles – Abs	lency and nic mean for olute and re	Dispe raw lative	ersion and a meas	n: A group sures	rith oed of	nmetic me data – Pr Dispersio	ean, Me operties n – Ran	s – Qua ge – Q	artiles, uartile	6	
UNIT III	deviation – Mean deviation – Standard deviation – Coefficient of Variation – Lorenz Curve. Measures of Skewness, Kurtosis and Moments: Definition – Calculation of Karl Pearson's, Bowley's and Kelly's coefficient of Skewness – Moments – Raw and Central Moments – Relation between raw and central moments – Measures of Skewness and								Karl Central	6		
UNIT IV	Kurtosis 15 based on Moments. Correlation: Definition of Correlation – Types of correlation – Methods of correlation – Scatter diagram – Karl Pearson's correlation coefficient – Spearman's rank correlation coefficient – Properties – Concurrent deviation method – Correlation coefficient for ungrouped and grouped bivariate data.								elation	6		
UNIT V	Regression: Meaning of Regression – Regression lines – Regression coefficients – Regression coefficients for ungrouped and grouped bivariate data – Properties of regression coefficient – Finding the two regression equations of X on Y and Yon X and estimating the unknown values of X and Y.								6			
									To	tal	30	

	Course Outcomes	Programme Outcome
CO	Upon completion of the course the students would be Able to:	
CO 1	Remember the fundamental concepts of collecting and presenting statistical data.	PO1, PO6
CO 2	Understand the measures of central tendency and dispersion.	PO2
CO 3	Describe the concept and and Measures of Skewness, Kurtosis and Moments.	PO4, PO7
CO 4	Analyze the correlation and Concurrent deviation method.	PO6
CO 5	Understand the use of regression.	PO7, PO8

	Text Book
1	Gupta S. P (2002), Statistical Methods, Sultan Chand and Sons, New Delhi.
2	Gupta S. C and Kapoor V. K, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi.
3	Goon A. M, Gupta M. K and Dasgupta B (2008), Fundamentals of Statistics, (Vol I), World Press Ltd, Calcutta.
4	Bhat B. R, Srivenkataramana T and Madhava Rao K. S (1996), Statistics a Beginner's Text, (Vol. – I), New Age International Publishers, New Delhi.
	Reference Books
1.	Hogg R. V and Craig A. T (2006), Introduction to Mathematical Statistics, MacMillan, London
2	Saxena H. C, Elementary Statistics, Sultan Chand and Sons, New Delhi.
3	Sancheti D. C and V.K Kapoor, Statistics, Sultan Chand and Sons, New Delhi.
4	Agarwal B. L (1996), Basic Statistics (Third Edition), New Age International Publishers, New Delhi.
	Web Resources
1.	https://www.tutorialspoint.com/statistics/data_collection.htm
2	https://www.surveysystem.com/correlation.htm
3	https://www.investopedia.com/terms/r/regression.asp
4	https://course-notes.org/statistics/sampling theory

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	-	-	1
CO2	2	2	2	1	-	-
CO3	3	1	1	-	1	-
CO4	1	2	1	2	2	1
CO5	3	2	1	2	3	2
Weightage of course contributed to each PSO	12	9	6	5	6	4

Strong-3 M-Medium-2 L-Low-1

								Inst.		Marks	
Code	Subject Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
23BCAA P4	Computer-Oriented Statistical Methods Lab	Allied Lab	-	-	2	1	2	2	25	75	100
	Course Objective										
CO1	To introduce basic statistical programming Language thro		r the	anal	ysis	of sig	gnificance	differen	ices in	data using	g C++
CO2		o introduce various statistical method such as regression, Skewness, etc.									
CO3	Understand and perform correlation coefficient.										
CO4	Classify the linear regression										
CO5	Demonstrate and compute m	ulti regressi	on.								
S. No		List of Lab								No. of H	
1	Write a C++ program to exec									30	
2	Write a C++ program to C				Perfo	m tl	ne operati	ons add	ition,		
2	inverse, transpose, and multi				4.		1'	1			
3 4	Write a C++ program to Exe Write a C++ program to E										
4	variance, and covariance.	execute the	Stati	istica	I IUI	ictioi	is. Standa	aru Dev	iauon,		
5	Write a C++ program to dray	v the skewn	ess.								
6	Write a C++ program to obta			n coe	fficie	ent					
7	Write a C++ program to perf						listribution	n on the	data.		
8	Write a C++ program to Perf										
9	Write a C++ program to Con	npute the Le	east s	quar	es me	eans.					
10	Write a C++ program to Con	npute the M	ulti I	Regre	ession	1.					
		urse Outco								Progra Outco	
CO	Upon completion of the cour										
CO1	Students will able to understa									PO1, PO	6
CO 2	Students will able to program			catio	n of	Stati	stical met	hods		PO2	
CO 3	Apply and perform correlation									PO4, PO	7
CO 4	Analyze the various linear re		ogran	n.						PO6	0
CO 5	Know to compute multi regre		P - 4 1	D 1						PO7, PO	8
1	Goyal, M. (2008). Computer-l		rical			ical '	Technique	s. Laxm	i Publi	ications,	
	Ltd.	(0.0.0.) =			, -			~ 1	~1 .		
	Gupta, S. C., & Kapoor, V. K. & Sons.	(2020). Fu	ndan	ıenta	ls of	Mati	hematical.	Sultan (Chand	statistics	
		Refe									
l	Walpole, R. E., Myers, R. H., Engineers and Scientists (Vol.	•					Probabil	ity and S	Statisti	cs for	
		Wel	b Re	sour	ces						
1.	https://www.tutorialspoint.cor	n/statistics/	lata_	colle	ction	.htm					
2	https://www.surveysystem.com/correlation.htm										

Subje	ct Subject Name	Category	L	T	P	S	Credits	Inst.		Marks	
Code								Hours	CIA	Externa	Total
23BCA	A5 Graph Theory and its Applications	EC - 4 Allied	3	-	-	-	3	3	25	75	100
					bject						
LO1	Definition of Graph, sub gr	aph their repi	esen	tatior	ıs, de	gree	and algebr	aic opera	tions.		
LO2	Connected graphs, weighted graphs and shortest paths										
LO3	Trees: Characterizations, spanning tree, minimum spanning trees										
LO4	Eulerian and Hamiltonian g	graphs: Chara	cteriz	zatior	ı, Ne	essa	ary and suff	icient con	nditions		
LO5	Special classes of graphs: H	Bipartite grapl	hs, li	ne gra	aphs,	chor	dal graphs.				
UNIT				onte	•		<i>C</i> 1				No. of Hours
UNIT I	INTRODUCTION: Graph Circuits connectedness- C properties of Trees- Distance	omponents-	Eule	r Gra	aphs-	Ha	miltonian _J	paths and			15
UNIT II	CONNECTIVITY AND PLANARITY: Introduction to circuits - cut set- properties of cut set- All cut sets -connectivity and separability - Network Flows - 1-Isomorphism - 2-Isomorphism- Combinatorial and Geometric graphs - Planar Graphs - Different representation of planar graph.										
UNIT III	COLORING AND DIRECTED GRAPH: Basics of Colouring & Chromatic number – Chromatic partitioning – Graph Colouring – four colour Problem Chromatic polynomial - Matching – Covering - Directed graphs - Types of Directed Graphs – Diagraphs and binary relations – Directed paths- Euler Graph.							15			
UNIT IV	MATRIX REPRESENTA Quotient Graphs, Transitive examples), spanning Trees Trees, Weighted Graphs, Algorithm.	ve Closure d of Connect	ligra _l ed R	oh, E elatio	uler' ons, I	s Pa Prim	th & Circ's Algorith	uit (only m to cor	definit	ions and Spanning	15
UNIT V	APPLICATIONS OF G directed Graph, - Graph w with directed graph- Shorte	ith n vertices	and	k co	lours	- Sh	ortest path	from one	e to ma		15
				Tota	ıl						75
		Course (omes							gramme utcome
CO	On completion of this cours			mara1-	th ~ -		onha1-		11 _{rg} T	ılan	
CO1	To Introduce the fundament graphs, Hamiltonian Paths		_			•			iiks, Eu	PO	,PO6
CO2	Understanding the conception Isomorphism and Combination	ots of Circui	ts, C	Cut s	et ar				ork Flo	ows, PO2	2
CO3	Applying the concept of Covering Pattern and Euler	olouring with Graphs.	Chr	omat	ic Nu			-		ng, PO2	2,PO4
CO4	Analyzing the Various Con						ns, Euler Pa	ths Circu	it,	PO4	1,PO6
CO5	Kruskals and Prims Algorithms, Connected Components. Implementation of an application using All Types of Graphs and evaluate the Applications							5,PO6			

	Text Book								
1	Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science" Prentice Hall of								
	India 2010(Reprint)								
2	Rosen H "Discrete Mathematics and Its Application " Mc Graw Hill, 2007								
	Reference Books								
1.	Discrete Maths for Computer Scientists & Mathematicians by Mott, Kandel, Baker								
2.	Clark J and Holton DA "First look at Graph Theory" Allied Publishers 1995								
	Web Resources								
1. Web resources from NDL Library, E-content from open source libraries									
2. 1) https://d3gt.com/ 2) https://www.coursera.org/courses?query=graph%20theory									

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	1	3	2	3
CO 3	3	3	3	3	2	3
CO 4	3	3	3	3	2	3
CO 5	3	2	3	3	3	3
Weightage of course contributed to each PSO	15	15	13	15	13	15

S-Strong-3 M-Medium-2 L-Low-1

Subjec	ct Subject Name	Category	L	T	P	S	Credits	Inst.		M	arks	
Code								Hours	CIA	Exte	rnal	Total
23BCA	Graph Theory and	EC – 5	-	-	2	-	2	2	25	7	5	100
AP5	its applications Lab	Allied								,	3	100
	1					ectiv						
LO1	Definition of Graph, s						gree and alg	gebraic op	peration	ıs.		
LO2	Connected graphs, we				_							
LO3	Special classes of grap							phs.				
LO4	Trees: Characterizatio											
LO5	Eulerian and Hamilton	nan graphs: (Chara				essary and	sufficien	t condit	ions		N
Sl. No					etail							No. of Hours
1	Write a Program to f	ind the number	ber o	f vert	ices,	even	vertices, o	dd vertic	es and	numbe	er of	60
2	edges in a Graph.	1			1 1	4	4 4.	. 1.	4 1	. 1.	4 1	60
3	Write a Program to fin							es is aire	cied or	mairec	ieu.	
4	Write a program to fin Write a Program to Fin							orithm				
5	Write a Program to Fi								n			
6	Write a Program to fir											
7										sing Fl	ovd-	
,	Write a Program to find Shortest Path between every pair of vertices in a graph using Floyd-Warshall's Algorithm.											
8	Write a Program to im	plement Gra	ph Co	olour	ing.							
	8	1	1									60
		Cour	se Oı								_	ramme
GO	T T . 1 .1 C 1	. 1		1	.1	-	1 1		11 17	1	Ou	tcome
CO	To Introduce the fundam								zaiks, E	uler		
CO1	graphs, Hamiltonian Path Understanding the conc								vork Fl	lowe		
COI	Isomorphism and Combin					anu	ns Tropen	ics, Inciv	VOIK I	iows,	PO1	
CO2	Applying the concept of					Viimh	er Directed	1 Granhs	Match	ino		
002	Covering Pattern and Eul		iiii C	III OIII	acro 1	· vallic	or, Director	a Grupiis,	, iviateli	,,,	PO1,	PO2
CO3	Analysing the Various Co		eprese	entati	on of	Gran	hs, Euler P	aths Circ	uit,		DO 4	DO.
	Kruskals and Prims Algo						,		,		PO4,	PO6
CO4	Implementation of an app						ns and evalu	ate the A	pplicat	ions	PO4,	PO5,
	with travelling sales person	on Problem,	K col	our P	roble	em etc	.				PO6	
CO5	To Introduce the fundament					•			alks, E	uler	PO3,	PO5
	graphs, Hamiltonian Path	s Tree Prope	rties,			_	ths and circ	cuits.			103,	103
					t Boo							
1	Narsingh Deo, "Graph"	Theory with	Appl	ıcatio	n to	Engin	eering and	Compute	r Scien	ce" Pre	entice l	Hall of
2	India 2010 (Reprint)	matica and I	ta A :	1:	tion (· \ /	Crox: 11:11	2007				
2	Rosen H "Discrete Mathe	manes and I		•		Books		<u> </u>				
1.	Discrete Maths for Comp	uter Scientic						andel Ro	aker			
2.	Clark J and Holton DA "								unci			
2.	Ciair v and Holton DA	1 113t 100K at		Veb F			a i uonsiici	5 1770				
1.	Web resources from NDI	Library, E-	conte	nt fro	m op	en so	urce librari	es				
2.	1) https://d3gt.com/ 2) ht	<u> </u>							ory			
	-/=	*					. ,					

	t Subject Name	Category	L	T	P	S	Credits	Inst.		Marks	
Code								Hours	CIA	External	Total
23BCA	A Computer Oriented Numerical Methods	EC – 6 Allied	3	-	-	-	3	3	25	75	100
		I	Learn	ing (Objec	ctives		1			
LO1	To introduce the various to										
LO2	To make understand the fur						•				
LO3	To apply interpolation and						··				
LO4	To solve problems using nu							4:			
LO5 UNIT	To solve linear systems, nu	imericai soiui		Cont		differ	rential equa	mons.			No. of
UNII			,	Cont	ents						Hours
UNIT I	FUNDAMENTALS OF ALGEBRAIC EQUATION : Solution of algebraic and transcendental equations-Bisection method – Fixed point iteration method – Newton Raphson method –linear system of equations – Gauss elimination method – Gauss Jordan method .							15			
UNIT II	ITERATIVE, INTERPOLATION AND APPROXIMATION: Iterative methods - Gauss Jacobi and Gauss Seidel – Eigen values of a matrix by Power method and Jacobi's method for symmetric matrices. Interpolation with unequal intervals – Lagrange's interpolation – Newton's divided difference interpolation										
UNIT III	INTERPOLATION WITH EQUAL INTERVAL: Difference operators and relations Interpolation with equal intervals – Newton's forward and backward difference formulae.							15			
UNIT IV	NUMERICAL DIFFERENTIATION AND INTEGRATION: Approximation of derivatives							15			
UNIT V	INITIAL VALUE PROE step methods – Taylor's se method for solving(first, se	ries method -	- Eule	er's n 4th) o	netho order	d - N	Iodified Eu	ler's met	hod - R	_	15
				Tot							75
		Course		come	es .						ramme tcome
CO	On completion of this cour				1	1 1				DO 1	DO.
CO1	Know how to solve various	1	num	erica	I met	hods				PO1,	PO6
CO2 CO3	Use approximation to solve Differentiation and integral		are an	nlied						PO2 PO2,	PO4
CO4	Apply, direct methods for			•	=					PO4,	
CO5	Numerical solution of ordin				ns					PO5,	
		•]	Γext l	Book						
1	Balagurusamy, E., Numerio										
2	Rajaraman V., Computer C	Priented Num					dition, Prei	ntice Hall	India,	New Delhi, 1	998.
	C. D.11:1.C	0 ' / 137		eren				1000			
4	Stoor, Bullrich, Computer							•		1000	
1.	Krishnamurthy, E.V., Sen,										P) Ltd.
1. 2. 3.	Jain, M.K., Iyengar, S.R.K.	., Jain K.K., I								/w 11ge ma.(1) Liui,
2.		., Jain R.J., N		ical N	Metho	ods fo				<u> </u>	

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	1	3	2	3
CO 3	3	3	3	3	2	3
CO 4	3	3	3	3	2	3
CO 5	3	2	3	3	3	3
Weightage of course contributed to each PSO	15	15	13	15	13	15

S-Strong-3 M-Medium-2 L-Low-1

Subject	Subject Name	Category	L	Т	P	S	Credits	Inst.		Marks	
Code								Hours	CIA	External	Total
23BCAA P6	Computer Oriented Numerical Methods Lab (using C)	EC – 7 Allied	-	-	2	-	2	2	25	75	100
					bjec				•		
LO1	To introduce the various	s topics in Nu	merio	cal m	ethoc	ls.					
LO2	To make understand the	fundamental	s of a	lgebr	raic e	quati	ons.				
LO3	To apply interpolation and approximation on examples.										
LO4	To solve problems using	g numerical d	iffere	ntiati	ion ar	nd int	egration.				
LO5	To solve linear systems,	numerical so	lutio	n of c	ordina	ary di	fferential e	quations.			
	Details							No. of Hours			
1	Write a C Program to fin	nd the roots o	f non	-line	ar equ	ıatior	n using bise	ction met	hod.		
2	Write a C Program to fin	nd the roots o	f non	-linea	ar equ	ıatior	n using new	ton's me	thod		60
3	Write a C Program to solve the system of linear equations using gauss - elimination method.										
4	Write a C Program to integrate numerically using Trapezoidal Rule.										
5	Write a C Program to integrate numerically using Simpson's rule.										
6	Write a C Program for Newtons forward difference.										
7	Write a C Program to in	nplement Lag	range	's int	erpol	ation	method for	r finding	f(x) for	a given x	
8	Write a C Program to fin	nd the largest	eigei	ı valı	ie of	a mat	trix by pow	er - meth	od.		
9	Write a C Program to method.	find numeric	al so	lutio	n of	ordir	nary differe	ential equ	ations	by euler's	
10	Write a C Program to find numerical solution of ordinary differential equations by runge- kutta method.										
										Total	60
		Course Outc							Pro	ogramme O	utcome
CO CO1	On completion of this co				i 001 r	notho	.de		PO	1	
CO2	Use approximation to so			umer	icai i	пешс	ous			1, PO2	
CO3	Differentiation and integ			appl	ied					4, PO6	
CO4	Apply, direct methods f	for solving lin	ear s	ysten	ns				PO	4, PO5, PO6	I
CO5	Numerical solution of or	rdinary differ							PO.	3, PO5	
1	D 1 E M	. 137.4			Book		11 1000				
2	Balagurusamy, E., Num Rajaraman V., Compute 1998.							Prentice 1	Hall Inc	lia, New Del	lhi,
			Refe	<u>renc</u>	e Bo	oks					
1.	Stoor, Bullrich, Comput										
2.	Krishnamurthy, E.V., S		•							•	
3.	Jain, M.K., Iyengar, S.I	K.K., Jain R.K	, Nı	ımeri	cal N	letho	ds: Problen	ns and So	lutions,	New Age li	nt. (P)

	Ltd., New Delhi, 1997.					
4.	Jain, M.K., Iyengar, S.R.K., Jain R.J., Numerical Methods for Scientific and Engineering Competition,					
	New Age Int. (P) Ltd., New Delhi, 1997					
	Web Resources					
1.	https://www.udemy.com/course/computer-oriented-numerical-techniques/					

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	1	3	2	3
CO 3	3	3	3	3	2	3
CO 4	3	3	3	3	2	3
CO 5	3	2	3	3	3	3
Weightage of course	15	15	13	15	13	15
contributed to each PSO						

S-Strong-3 M-Medium-2 L-Low-1