ALAGAPPA UNIVERSITY, KARAIKUDI NEW SYLLABUS FOR AFFILIATED COLLEGES UNDER CBCS PATTERN WITH EFFECT FROM 2022-23 ONWARDS

B.Sc., PHYSICS Programme Structure

Sem.	Part	Course	Courses	Title of the Paper	T/P	Credit	Hours/	M	ax. Ma	rks
		Code					Week	Int.	Ext.	Total
	I	2211T	T/OL	Tamil / Other Language - I	T	3	6	25	75	100
	II	712CE	Е	Communicative English –I	T	3	6	25	75	100
		22BPH1C1	CC	Mechanics and Properties of Matter	Т	5	5	25	75	100
		22BPH1P1	CC	General Physics Practical-I	P	4	4	40	60	100
I	III	-	AL-IA	Mathematics/ Chemistry/ Electronics/Computer Science	Т	3	3	25	75	100
		-	AL-IA	Practical - Respective Allied Theory Course	P	2	2	40	60	100
	IV	22BVE1	SEC-I	Value Education	T	2	2	25	75	100
	1 V			Library			2			
				Total		22	30	205	495	700
	I	2221T	T/OL	Tamil / Other Language-II	T	3	6	25	75	100
	II	722CE	Е	Communicative English –II	T	3	6	25	75	100
		22BPH2C1	CC	Electricity and Electromagnetism	Т	5	5	25	75	100
		22BPH2P1	CC	General Physics Practical-II	P	4	4	40	60	100
II		-	AL-IB	Mathematics/ Chemistry/ Electronics/Computer Science	Т	3	3	25	75	100
		-	AL-IB	Practical - Respective Allied Theory Course	P	2	2	40	60	100
	IV	22BES2	SEC-II	Environmental Studies	T	2	2	25	75	100
	1 4			Library			2			
				Total		22	30	205	495	700
	I	2231T	T/OL	Tamil / Other Language-III	T	3	6	25	75	100
	II	2232E	Е	English for Enrichment –I	T	3	6	25	75	100
		22BPH3C1	CC	Heat and Thermodynamics	T	3	3	25	75	100
		22BPH3C2	CC	Optics	T	3	3	25	75	100
III	III	22BPH3P1	CC	General Physics Practical- III	P	3	3	40	60	100
		-	AL-IIA	Mathematics/ Chemistry/ Electronics/Computer Science	Т	3	3	25	75	100

		-	AL-IIA	Practical - Respective Allied Theory Course	P	2	2	40	60	100
		22BE3	SEC-III	Entrepreneurship		2	2	25	75	100
	IV	-	NME-I	Adipadai Tamil/ Advance Tamil/ IT Skill for employment/ MOOC's	Т	2	2	25	75	100
				Total		24	30	255	645	900
	I	2241T	T/OL	Tamil / Other Language-III	T	3	6	25	75	100
	II	2242E	Е	English for Enrichment –II	T	3	6	25	75	100
		22BPH4C1	CC	Atomic Physics	T	4	4	25	75	100
		22BPH4C2	CC	Nuclear Physics	T	4	4	25	75	100
		22BPH4P1	CC	General Physics Practical- IV	P	3	3	40	60	100
IV	III	-	AL-IIB	Mathematics/ Chemistry/ Electronics/Computer Science	Т	3	3	25	75	100
		-	AL-IIB	Practical – Respective Allied Theory Course	Р	2	2	40	60	100
	IV	-	NME-II	Adipadai Tamil/ Advance Tamil/ Small Business management/ MOOC's	Т	2	2	25	75	100
				Total		24	30	230	570	800
		22BPH5C1	CC	Analog Electronics	T	4	4	25	75	100
		22BPH5C2	CC	Computer Programming in C	Т	4	4	25	75	100
	III	22BPH5C3	CC	Classical and Statistical Mechanics	T	4	4	25	75	100
X 7		22BPH5C4	CC	Solid State Physics	T	4	4	25	75	100
V		22BPH5P1	CC	General Physics Practical-V	P	4	6	40	60	100
		22BPH5P2	CC	General Physics Practical- VI	P	4	6	40	60	100
				Carrier development / employability skills		-	2	-	-	-
				Total		24	30	180	420	600
		22BPH5I		Internship		24	30	150	250	400
						OR				
		22BPH6E1		Integrated Electronics	T	6	6	25	75	100
VI	III	22BPH6E2	DSE	Relativity and Quantum Mechanics	T	6	6	25	75	100
		22BPH6E3		Nano Physics	T	6	6	25	75	100
		22BPH6E4		Laser Physics and Fibre Optics	Т	6	6	25	75	100
			1	Library / Yoga etc.		-	2	_	-	-

			Carrier Development/ Employability skills		-	4	-	-	-
					24	30	100	300	400
					OR				
	22BPH6PR		Project		6	10	25	75	100
	22BPH6E1		Integrated Electronics	T	6	6	25	75	100
	22BPH6E2		Relativity and Quantum Mechanics	Т	6	6	25	75	100
	22BPH6E3		Nano Physics	T	6	6	25	75	100
		others	Library / Yoga / career development / employability skills / Field trip etc.		-	2	-	-	-
			Total		24	30	100	300	400
			Grand Total		140	•	-	-	4100

Sem.	Part	Course	Title of the Paper		Hrs./	M	lax. Ma	arks
Seill.	Falt	Code	Title of the Faper	Cr.	Week	Int.	Ext.	Total
I		71BEPP	Professional English for Physical Science - I	4	5	25	75	100
II	III	72BEPP	Professional English for Physical Science -II	4	5	25	75	100
III	111	*	Professional English for Physical Science - III	4	5	25	75	100
IV			Professional English for Physical Science - IV	4	5	25	75	100

^{*}The Syllabus of Professional English for III & IV Semester will be provided after Receiving the syllabus from TANSCHE.

As per TANSCHE, the Professional English book will be taught to all four streams apart from the existing hours of teaching/additional hours of teaching (1hour/day) as a 4 credit paper as an add on course on par with Major paper and completion of the paper is a must to continue his/her studies further.

- ➤ T/OL-Tamil or Other Language,
- \triangleright E English
- > CC-Core course -Core competency, critical thinking, analytical reasoning, research skill & team work
- ➤ Allied / GEC -Exposure beyond the discipline
- ➤ AECC- -Ability Enhancement Compulsory Course (Professional English & Environmental Studies) Additional academic knowledge, psychology and problem solving etc.,
- > SEC-Skill Enhancement Course Exposure beyond the discipline (Value Education,

Entrepreneurship Course, Computer application for Science, etc.,

- ➤ NME -Non Major Elective Exposure beyond the discipline
- ➤ DSE Discipline specific elective –Additional academic knowledge, critical thinking, and analytical reasoning-Student choice either Internship or Theory papers or Project + 2 theory paper.
 - If internship Marks = Internal- 150 (75+75) two midterm evaluation through Viva voce + Report- 150+ External Viva voce- 100 = 400.
 - If Project Marks = Internal- 50 +Thesis- 100 + Viva voce- 50 = 200 + 2 theory paper- 200 = 400
- ➤ MOOCs Massive Open Online Courses
 - * T-Theory, P- Practical

	Semester - I			
Course Cod		T/P	С	H/W
22BPH1C1	MECHANICS AND PROPERTIES OF MATTER	T	5	5
Objectives	> To express the concept of centre of gravity along with its e			•
	of the objects and also to study the centre of gravity of diff	erent sy	stems	in real
	life			_
	To study the laws of gravitation, mass, density and acceler	ation di	ue to g	gravity
	of earth and gravitational field	ovoluote	tha	alastia
	To understand the properties of elastic bodies and to constants of materials	evaruate	me	erastic
	To explain the phenomena of viscosity, surface tension as	nd its ut	ility iı	n fluid
	dynamics with an understanding of their needs in day-to-da		iiity ii	1 IIuiu
Unit - I	Dynamics of Rigid body:-	<i>y</i> 1110.		
	Moment of inertia – theorems of perpendicular and parallel axe	s – M.I	of a c	ircular
	disc, solid sphere, hollow sphere and cylinder about all	axes -	Com	pound
	pendulum – theory – equivalent simple pendulum – reversi	bility o	f cent	ers of
	oscillation and suspension – determination of g and k.			
Unit - II	Gravitation:-	. 5		
	Newton's law of gravitation – Kepler's laws of gravitation – G			
	Mass and density of earth – Acceleration due to gravity –			_
	altitude, depth and rotation of earth – Value of 'g' at po Gravitational field – Gravitational potential – Gravitational		-	
	distant from a body.	росенна	ı aı a	ponit
Unit - III	Central Force Motion:-			
	Angular velocity, angular momentum and K.E of rotation –	Torque	and a	ngular
	acceleration – Relation between them – Expression for acc			
	rolling down an inclined plane without slipping – Center of	mass –	veloci	ty and
	acceleration of centre of mass – Reduced mass – Principle and	velocit	y of a	rocket
	motion.			
Unit - IV	Elasticity:-	_		
	Elasticity — Hooke's law — Elastic moduli — Poisson's ratio —			_
	beams – Expression for bending moment – Cantilever- Theory of waying the property of the prope			
	uniform bending – Determination of young's modulus (Mic Torsion of a body – Expression for couple per unit twist – Wor	-		
	wire – Torsional oscillations of a body – Torsional pendulum.	K donc	III twi	sting a
Unit - V	Surface Tension and Viscosity:-			
,	Surface tension – definition – Explanation of surface tension	on kine	etic the	eory –
	Excess pressure inside a curved liquid surface – Excess pressu			
	and cylindrical drops and bubble - drop weight meth-		_	
	determination.			
	Viscosity – Coefficient of viscosity – Explanation of		•	
	theory - Streamline and turbulent motion – Poiseuille's form		-	
	determination using Poiseuille's method – viscosity of high	ly visco	ous lic	Juid –
Deference	terminal velocity – Stoke's method			
	and Text Books:- Subramaniam S. (2006). <i>Properties of matter</i> . New Delhi: S. Ch	and & C	Ompo	nv.
Diffial and S	buoramamam 3. (2000). Tropernes of maner. New Delli. 3. Cl	anu & C	Jompa	шу.

Gulati H.R. (1982). Fundamentals of General Properties of Matter. New Delhi: S. Chand & Company.

Hallidary D, Resnick and Walker J. (2001). *Fundamental of Physics*. New York: 6th Edition, Wiley.

Mathur D.S. (2001). *Mechanics*. New Delhi: S. Chand & Company.

Murugesan R, (2004). Properties of matter. New Delhi: S. Chand & Company.

Narayanamoorthy. (2008). *Mechanics – Part I and II*. National Publishing Company.

outcomes

- ➤ The students will be able to know about the concept of moment of inertia of the rigid bodies
- > The students gain knowledge on gravity and variation of acceleration due to gravity at different location
- > The students will be able to know concepts of angular velocity, angular momentum, kinetic energy of rotating body and motion of the rocket with basic principle
- The student will be able to identify the materials suitable for constructing buildings, based on the moduli of elasticity.
- > The students gain knowledge on properties of liquids and its determination

		Semester - I								
Course Cod	de	Core Practical-1	T/P	C	H/W					
22BPH1P1		GENERAL PHYSICS PRACTICAL - I	P	4	4					
Objectives	>	To determine the Young's modulus and Rigidity modulus	of the	ma	terials					
		using various methods								
		To compare the viscosities of the given two liquid								
		To verify the law of transverse vibrations of a stretched string								
		To determine the specific heat capacity of liquids by hea	iting ai	nd c	ooling					
		process	1		-4::4					
		To carry out the experiments to calculate thermo emf., then and specific heat capacity	rmai co	mau	cuvity					
	>	To perform optical experiments, to determine the refractive index and								
		dispersive power								
	_	ny Seven experiments								
	_	Uniform bending – Pin and microscope								
		2. Non – Uniform bending – Optic lever								
		3. Torsion Pendulum – Determination of rigidity modulus of	the wi	re ar	ıd					
		moment of inertia of the disc								
	4	4. Comparison of Viscosities – Burette								
	4	5. Sonometer – verification of the laws of transverse vibratio	ns of a	strii	ıg					
	6	6. Oscillation of cantilever								
	7	7. Surface Tension – Drop weight method								
	8	3. q, n, σ– Searle's method								
	Ç	9. Specific heat capacity of liquid – Newton's law of cooling	7							
	1	10. Spectrometer – Dispersive power of prism								
Outcomes		The students will be able to determine the Young's modulus,	Rigidit	y m	odulus					
		of the materials using various methods, compare the viscos								
		two liquid, verify the law of transverse vibrations of a								
		determine the specific heat capacity of liquid, determine the			_					
		and dispersive power.	c romu	, 0	mach					
Ì		and dispersive power.								

	Semester - II									
Course Cod	de Core Course-2	T/P	C	H/W						
22BPH2C1	ELECTRICITY AND ELECTROMAGNETISM	T	5	5						
Objectives	> To provide comprehensive knowledge and underst	anding the	e bas	ics of						
Ū	electricity and electromagnetism	_								
	To expose the students to the effects of heat, chemical of	on electric o	urren	t						
	To understand the concepts of self induction, mutual ir	duction, Fa	araday	y's law						
	and Lenz's laws.		•							
Unit - I	Magnetic Effect of Electric Current :-									
	Biot Savart law - Magnetic induction at a point due to a stra	ight condu	ctor c	arrying						
	current - Magnetic induction at a point on the axis of a	a circular o	oil c	arrying						
		current – Amperes circuital law – Lorent'z force on a moving charge –Torque on								
	current loop in a uniform magnetic field -Moving coil Ballistic galvanometer									
	theory –experiment to find charge sensitivity.									
Unit - II	Thermal and Chemical Effect of Electric Current:-									
	Thermoelectricity –Seebeck effect- laws of thermo e.m.f –	measureme	nt of	thermo						
	e.m.f. using potentiometer – Peltier effect – demonstrati	on – Thor	nson	effect-						
	Thermodynamics of thermo couple – Thermo electri									
	Applications – Boy's radio micrometer.									
	Faradays laws of electrolysis – Electrical conductivity of a	n electroly	te – s	pecific						
	conductivity – Kohlrausch's bridge method.									
UNIT- III	Electromagnetic Induction:-									
	Faraday's laws of electromagnetic induction-self induction	- self ind	uctan	ce of a						
	long solenoid – determination of L by Anderson's method	l – mutual	indu	ction –						
	mutual inductance between two co-axial coils - experim									
	mutual inductance – coefficient of coupling- energy stored i	n a coil – e	ddy c	urrents						
	-uses.									
UNIT- IV	AC And DC Circuits:-									
	Growth and decay of current in LC, LR and CR circuit	s with d.c	. volt	ages -						
	determination of high resistance by leakage – growth and d	lecay of ch	arge i	n LCR						
	circuit –conditions for the discharge to be oscillatory –freque	ency of osc	illatio	n.						
	Alternating Current – capacitance and resistance in series -	- LCR serie	es res	onance						
	circuit - sharpness of resonance - parallel resonance circ	uit - pow	er in	an AC						
	circuit – power factor.									
UNIT- V	Maxwell's Equation & Electromagnetic Waves:-									
	Introduction - Maxwell's equations - Displacement curre	ent- Poynti	ng vo	ector –						
	Electromagnetic waves in free space - Hertz experime	nt for pro	ductio	on and						
	detection of EM waves - Wave equations for Electric fiel	d and Mag	netic	field -						
	monochromatic plane waves – E.M. waves in a matter – refl	_								
	at normal incidence.									
Deference	and Text Books :-									

BrijLal & Subramanyam S. (2005). *Electricity and Magnetism*. Agra: Ratan Prakashan Mandir

Publishers.

David J. Griffith (2012). Introduction to Electrodynamics. New Delhi: PHI.

Halliday D., Resnick R. and Walker J.(2011). Fundamentals of Physics – Electricity and Magnetism. India: Wiley India Private Limited

Murugeshan R. (2008). Electricity and Magnetism. New Delhi: S Chand & Company.

Narayanamoorthy M. and Nagarathinam N. (1990). *Electricity & Magnetism*.. Chennai: Revised edition edition, National publishing Co.

Pourcel E.M. (2010) *Electricity and Magnetism*. Berkley Physics Cource, Volume-2 .Mc Graw-Hill company

Tiwari K.K. (2012). Electricity and Magnetism. New Delhi: S Chand & Company.

outcomes

- > The students will be able to understand the fundamental laws of electricity and electromagnetism, identify the chemical, thermal and magnetic effects of electric current, and analyses and solve electrical circuits with dc and ac source
- > To understand electromagnetic induction and different types of ac and dc circuits
- > The student gain knowledge of electromagnetic waves and their propagation.

Semester - II										
Course Cod	le	Core Practical-2	T/P	C	H/W					
22BPH2P1		GENERAL PHYSICS PRACTICAL-II	P	4	4					
Objectives		mine the Young's modulus and rigidity modulus of	the ma	terials	susing					
	various r									
		mine the acceleration due to gravity a place using di	fferent	metho	ods					
		he viscosities of the given two liquid								
	•	y the law of transverse vibrations of a stretched strin	_							
		the frequency of the alternating current supplied to come optical experiments to determine the refuser			v and					
		sive power								
	*									
	Any Seven	experiments orm bending – Optic lever								
	2. Non	 Uniform bending – Pin and microscope 								
	3. Com	pound Pendulum								
	4. Statio	c torsion method – Rigidity modulus								
	5. Visco	osity – Searle's method								
	6. Sono	meter - Frequency of tuning fork and relative densi	ty of a	solid						
	7. Bifila	ar Pendulum								
	8. Sono	ometer – AC frequency								
	9. Depr	ression of a Cantilever								
	10. Spec	trometer - Refractive index of a solid prism								
Outcomes	modulus find the vibration	dents will be able to determine the Young's mo of the materials, determine the acceleration due viscosities of the given two liquid, verify the as of a stretched string, find the frequency of the active index and dispersive power	to grav law o	vity a of tran	place, sverse					

		Semester - III						
Course Code	e	Core Cou	rse-3	T/P	С	H/W		
22BPH3C1		HEAT AND THERM	IODYNAMICS	T	3	3		
Objectives		e, the basic principles of h		ation p	roces	S		
	> To explore	the idea of lowering the ter	mperature					
		and the concept of entropy						
		and the kinetic theory of ga	ases					
Unit - I	•	and Calorimetry:-						
		effect – Thermoelectric ti						
		ult's method of mixtures(so						
		Barnes method - Specific	2 0					
	_	on – C _v by Joly's differen	itial steam calorimete	r meth	od –	C _p by		
	Regnault's me							
Unit - II	Thermodynar							
		Reversible and irreversible processes – isothermal and adiabatic process - work						
	done during adiabatic and isothermal process - second law of thermodynamics - Carnot's engine - its efficiency. Entropy - change of entropy in reversible and							
	_	•		•				
		cesses – temperature-entro	py diagrams – chang	ge of er	ntropy	when		
TI 14 TIT	ice converted i							
Unit - III	Low Tempera	· ·	. A: I : 4-2- D	1:	C 4	: c		
		effect - Liquefaction of		-				
	• •	efaction of helium(Kamme y – Lambda point – produ	•					
	demagnetization		uction of low tempera	atures	– au	iabatic		
Unit - IV	Transmission							
Cilit - I v		oefficient of thermal condu	activity Convection	lance	rota	organ		
		Newton's law of cooling –						
		ion - black body - energy	-		-	•		
		ayleigh Jean's law– Planck						
	water flow pyr	• •	t b law (140 delivation	1) 5010		Stairt		
Unit - V	Kinetic Theor							
CIII ,		Kinetic Theory of gases	 Brownian motion 	and its	s feat	ures -		
		viscosity, diffusion and the						
		Vander walls equation of						
		on between Vander Wall's						
Deference	and Text Rooks				-			

Brijlal and Subramanyam S. (2005). *Heat and Thermodynamics*. New Delhi: 16th Edition S.Chand & Co,

Mathur D.S. (2014). Heat and Thermodynamics. New Delhi: 5th Edition & Company.

Murughesan R. Kiruthiga Sivaprasath. (2008). *Thermal Physics*. New Delhi: II Edition S.Chand & Co

Narayanamoorthy M. and Nagarathinam N. (1987). Heat. Chennai: Eight edition, National

publishing Company.

Rajan J.B. (1985). Heat & Thermodynamics. New Delhi: S. Chand Publisher.

Varma H.C. (2015). *Concepts of Physics Volume I and II*. New Delhi: Bharati Bhawan Publishers.

- > The student will be able to learn the transmission of heat by the various process by studying experiments
- > The students gain knowledge of the laws of thermodynamics and their applications
- > The students will be motivated to carry out research in Heat and Thermodynamics and its related fields

		Semester - III							
Course Cod	le	Core Course-4	T/P	C	H/W				
22BPH3C2		OPTICS	T	3	3				
Objectives	Γ <	To understand the various types of aberrations in the lens	es and	prisn	ns and				
		heir elimination process							
		To elaborate the concept of dispersion, dispersive power an	d the	forma	tion of				
		ainbows							
		To study the basic concepts of interference, diffraction ar	ıd pola	rizatio	on and				
		he various applications							
Unit - I		netrical Optics:-							
		rations – Spherical aberration in lenses – defects in len							
		mizing spherical aberration - Condition for minimum spherical							
		two thin lenses separated by a distance – Chromatic aberration in lenses							
		lition for achromatism of two thin lenses (in contact and	out o	t con	tact) -				
***		sden and Huygen's eyepieces – Comparison of eyepieces.							
Unit - II	_	ersion:-							
		ersion produced by a prism – angular dispersion – d							
		hy's formula – achromatism in prisms – deviation w							
		ersion without deviation – Direct vision spectroscope –							
Unit - III		roscope – Rainbow – Theory of primary rainbow and secon	uary ra	IIIDOW	<u>′•</u>				
Cilit - III		litions for interference – Theory of interference fringes – :	interfei	ence	due to				
		eted light (thin films) – colours of thin films – wedge shap							
		optical flatness – Newton's rings by reflected light –							
		length of light – Michelson's Interferometer – theory a							
		surement of wavelength).	110	чррг	·cution				
Unit - IV		action:-							
		nel's diffraction – rectilinear propagation of light – zone pla	ate –ac	tion o	f zone				
		-diffraction at circular aperture– Fraunhofer diffraction at s							
		Plane diffraction grating – theory of plane transmission gr	_						
		termine wavelength(Normal incidence method) –resolving							
		ion for resolution- resolving power of a microscope - res							
	prism			_					
Unit - V	Polar	risation:-							
	Doub	ole refraction - Huygens's explanation of double refra	action	in u	niaxial				
	crysta	als-Plane, elliptically and circularly polarized light - Quart	ter wav	e plat	es and				
		wave plates - Production and detection of plane, circula	-	-	•				
	_	ized light- Optical activity- Fresnel's explanation of optical	activit	$ty - S_1$	pecific				
		ory power –Laurent's half shade polarimeter.							
Reference	and Te	ext Books :-							
A : C1 1	(200		1 . /	٦.					

Ajoy Ghatak (2009). Optics. New Delhi: IV Edition, Tata Mcgraw Hill Publishing Company.

Mcgraw Hill Publishing Company.

Banewell C.N. (2006). Introduction to Molecular Spectroscopy. New Delhi: IV Edition, Tata

Hallidary D, Resnick and Walker J. (2001). *Fundamental of Physics*. New York: 6th Edition, Wiley.

Murugesan R. (2008). Optics and Spectroscopy. New Delhi: S. Chand & Company.

Sathyaprakash (1990). Optics. New Delhi: VIIth Edition, Ratan Prakashan Mandhir

Singh and Agarwal. (2002). *Optics and Atomic Physics*. Nineth edition Pragati Prakashan Meerut.

Subramanyam and Brijlal. (2004). A text book of Optics. New Delhi: S. Chand & Company.

- > The students understand the principles of geometric optics, which helps in the practical design of many optical systems and instruments
- ➤ The students will be able to understand the interference, diffraction, and polarization phenomena, laying the foundation for understanding concepts such as holograms and interferometers.
- > The students will know the concept of polarization, which helps to find the optical activity of substances and their rotatory power.

		Semester - III			
Course Cod	le	Core Practical-3	T/P	C	H/W
22BPH3P1		GENERAL PHYSICS PRACTICAL - III	P	3	3
Objectives	•	out the experiments, to calculate thermo emf, the	nermal	condu	ctivity
	_	ific heat capacity			
		ruct the electrical circuits to measure voltage to cal			ter
		he resistance and temperature coefficient of the gi	ven wii	·e	
		the surface tension of the given liquid			_
		he thickness of a thin wire by forming interference	frings	in the	wedge
	shaped a	ır film			
	Any Seven	experiments			
	1. Meld	e's string – transverse and longitudinal mode			
	2. Surfa	ce tension – Capillary rise			
	3. Spect	rometer – i-d curve			
	4. Calib	ration of low range Voltmeter - Potentiometer			
	Carey	7- Foster Bridge – Specific resistance and Tempera	ture Co	effici	ent
	6. Air w	redge - Thickness of thin wire			
	7. Defle	ction magnetometer – Tan A and Tan B Position			
	8. Therr	nal conductivity – Lee's disc method			
	9. Therr	nal conductivity of rubber			
	10. Speci	fic heat capacity of liquid – Joule's Calorimeter			
Outcomes		ents gain knowledge to calculate and determine t			
		vity, Specific heat capacity, constructing electrical			
		o calibrate voltmeter, the resistance and temperatu			
	_	naterial, the surface tension of the given liquid	d, and	to fin	d the
	thickness	s of a thin wire by forming interference fringes			

		Semester - IV							
Course Cod	le	Core Course-5		T/P	С	H/W			
22BPH4C1		ATOMIC PHYSICS		T	4	4			
Objectives	application To unders limitations	tand the evolution of different atomic the effect of application of magnetic	e models an	d their	r meri	its and			
Unit - I	Positive Rays:	·							
	Discovery – p spectrograph – Dunnington's	Discovery – properties – analysis – Thomson's parabola method – Aston's mass pectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – Dunnington's method of determining e/m. – Franck and Hertz's method – Davis-Boucher experiment							
Unit - II	Photo Electricity:-								
	determine e/m Einstein's Pho	nture of Photo-particles – Photoelectric emission laws – Lenard's method to nine e/m for photoelectrons – Richardson & Compton experiment – in's Photoelectric equation and its verification by Millikan's experiment. electric cells: Photo emissive cell – Photo voltaic cell- Photo conductive							
Unit - III	Atomic Struct								
	nuclear motion Sommerfield's Quantum num	del – Bohr's interpretation of the Hydro – evidences in favour of Bohr's theory relativistic atom model – drawbacks bers associated with the vector atom odic classification of elements.	y – corresponse – The vec	ndence tor ato	e prino om m	ciple – odel –			
Unit - IV	* *	e Of Spectral Lines:-							
	Coupling sched moment due to and Gerlach of quantum mech	mes – L-S Coupling – j-j Coupling – I o orbital motion of the electron – due t experiment – Normal Zeeman effect anical explanation – Larmor's theorer ch effect – Stark effect.	to spin of th t – theory	e elect	ron - xperin	- Stern nent –			
Unit - V	X-Rays and P	hoto Electric Effect:-							
	Bragg's law – method – rota importance –	X-rays – properties-absorption of X-ra Bragg's x-ray spectrometer – the po- ting crystal method – characteristic - Compton effect – theory and exp – Einstein's photoelectric equation – p	wder crysta spectra – perimental v	l methodology Moselverifica	od – I ley's	Laue's law –			

Beiser A. (1997). Concepts of Modern Physics. New Delhi: Tata McGraw-Hill Publications.

Hallidary D, Resnick and Walker J. (2001). *Fundamental of Physics*. New York: 6th Edition, Wiley.

Hamilton J.H. and Yang. (1996). Modern Physics. New Delhi: McGraw-Hill Publication.

Kenneth S. Krane. (1998). Modern Physics. Canada: John Willey & sons.

Murugeshan KiruthigaSivaprasath R.. (2008). *Modern Physics*. New Delhi: S. Chand & Company.

Rajam J.B. (2004). Atomic Physics . New Delhi: S. Chand & Company.

Sehgal D.L. Chopra K.L. Sehgal N.K.. (1991). *Modern Physics*. New Delhi: S. Chand & Company.

Subrahmanyam N. BrijLal. (2000). *Atomic and Nuclear Physics*. New Delhi: S. Chand & Company.

- > The students will be able to understand the evolution of different atomic models and their merit and limitations
- > The students will gain adequate knowledge of the fundamental principles governing the structure of the atom and the interactions
- > The students will gain sufficient expertise in atomic physics to follow courses at the advanced level

Semester - IV									
Course Code	Core Course-6	T/P	С	H/W					
22BPH4C2	NUCLEAR PHYSICS	T	4	4					
Objectives	To acquire the knowledge of fundamental Nuclear proper	ties an	d app	ly the					
	concepts to calculate various parameters of the nucleus								
	To understand the theoretical concepts of nuclear models								
	 To elaborate the working of nuclear reactors and their applic 		ı daily	/ life.					
	> To study how to detect nuclear radiation and accelerate particles								
	Properties and structure of Nuclei:-								
	General properties of nucleus - proton electron theory- prot								
	inding energy - binding energy and mass number curve - sig								
	orces - characteristics - Semi empirical mass formula - Nucle	ar mod	lels (Liquid					
	rop model).								
	Radio Activity:-								
	Fundamental laws of radio activity – theory of α , β and Υ do	• •							
	lpha, beta and gamma rays – neutrino and its properties-electro								
	somers – Mossabauer effect – applications– Radio carbon dating	g – radı	o isot	opes –					
	ses. Nuclear Reactions :-								
	Suctear Reactions :- Cinematics of nuclear reaction-Nuclear fission — Nuclear fusion	Nual	202 22	na atan					
	ses – atom bomb – hydrogen bomb-fusion reactor –plass								
	rtificial transmutation – Q- value of nuclear reaction–types of nuclear								
	Nuclear Detectors and Particle Accelerators:	ucicai i	cacti	<u>///</u>					
	Neutron sources and properties – detectors – G.M.counter – sc	intillati	on co	unter_					
	ubble chamber – Wilson cloud chamber – accelerate								
_	ynchrocyclotron – betatron.	313	Cyci	ouon					
	Cosmic Rays and Elementary Particles:-								
	Cosmic rays—introduction—discovery – latitude, altitude and	azimı	ıth e	ffects-					
	ongitudinal effect-north-south effect - primary and seconda								
	osmic ray showers-Van Allen belt–origin of cosmic radiation.	-		•					
	Elementary particles – particles and antiparticles	– ant	imatt	er—he					
f	undamental interaction - elementary particle quantum numb								
1:	aws and symmetry – the quark model								

Irving Kaplan. (2002). Nuclear Physics. New Delhi: Narosa Publishing house.

Longo. (1998). Fundamentals of Elementary Particle Physics. New Delhi: Tata McGraw-Hill Publications.

Pandya M.L. Yadav R.P.S. (2008). *Elements of Nuclear Physics*. Meerut: Kedarnath Ram Nath.

Roy R.R. and Nigam B.P. (1997). Nuclear Physics. NewDelhi: New Age International (P) Ltd.

Serge., W.A. Benjamin . (2004). Nuclei and Particles. USA .

Sharma R.C. (2000). Nuclear Physics. Meerut: K.Nath& Co.

Subrahmanyam N. and Brijlal. (1996). *Atomic and Nuclear Physics*. New Delhi: S. Chand & Co.

Tayal D.C. (2006). Nuclear Physics. Mumbai: Himalaya Publishing House.

- ➤ The students will be able to understand the basics of nuclear physics
- > The students gain knowledge about particle-antiparticle, decay processes and the working of particle accelerators and detectors
- > The students will be able to learn about the primary interaction between fundamental particles

		Semester - IV					
Course Cod	le	Core Practical-4	T/P	C	H/W		
22BPH4P1		GENERAL PHYSICS PRACTICAL - IV	P	3	3		
Objectives	ammeter, To carry of Specific h To determ spectrum To find th	Specific heat capacity To determine the wavelength of the most prominent lines in the mercury spectrum by the angle of diffraction					
	 Field a Newto Small Compa Compa Calibra Figure Detern 	tion of ammeter – Potentiometer long the axis of a coil – Deflection magnetome n's ring method – radius of curvature of biconve angle prism – Spectrometer trison of low resistances – Potentiometer rison of low resistance using spot galvanometer ation of high range Voltmeter - Potentiometer of merit – spot galvanometer/BG anination of mutual inductance – spot galvanometer of emf. – Potentiometer	ex lens				
Outcomes	and voltaging value of conductive wavelengt	nts will be able to construct the electrical circulates, calibrate the ammeter, and high range voe the given resistance and calculate the atty, and Specific heat capacity. He will be also hof the most prominent lines in the mercury curvature of the lens and wavelength	ltmeter, de thermo en able to de	termi nf, tl etermi	ne the nermal ine the		

		Semester - V			
Course Cod	le	Core Course-7	T/P	С	H/W
22BPH5C1		ANALOG ELECTRONICS	T	4	4
Objectives	To impart	basic knowledge on semiconductor and their ap	plication	S	
	> To unders	stand the concepts for solving real-time problem	ns related	to ele	ctronic
	circuits				
	> To develo	p the ability to design and analyse the circ	cuit conta	ining	diode,
		and operational amplifiers			
	To elabora	ate on the basics of special types of semiconduc	tor device	es	
Unit - I		analysis and semiconductor diodes:-			
		V-I characteristics of a PN junction diode –			
		er – Efficiency – filters – pi filter – Zener			
		tage regulator - LED - V-I characterist	tics – ad	vanta	ges –
		photo diode – characteristics -applications.			
Unit - II	Transistor An	•			
		Different modes of operations - CB mode &			
		of a transistor - h-parameter - AC equiv			
		analysis of amplifiers using h parameters (CE			
		ansformer coupled amplifier – power amplifi			tion of
		Class A, Class B and Class C amplifiers - Push	pull ampli	ifier.	
Unit - III		d Multivibrator:-	•. •		. . 1
		ciple -Effect negative feedback – Barkhausse			•
		hase shift oscillators using transistors – Expre			
T1 14 TT7		– astable, monostable and bistable multi vibrat	ors using	transı	stors.
Unit - IV		onductor Devices:-	T., 4 4		•4
		clamping circuits - Differentiating circuit -			
		effect Transistor (JFET) – MOSFET – FET		_	
	switch.	Γ – UJT relaxation oscillator – SCR – charac	cieristics	- 30	K as a
Unit - V					
Unit - V	Operational A	ampiliter:- mplifier – characteristics – parameters-appl	lications	In	vortina
		n inverting amplifier – adder – subtractor – inte			
		- square wave generator – Wien bridge oscillate			
Reference	and Text Books		oi –sciiii	11tt til 1	5gui.
		90). <i>Elements of Electronics</i> . New Delhi: S. Ch	and & Co	ompar	ıy.
Gupta and k	Kumar. (2002). A	Hand Book of Electronics. Meerut: PragatiPrak	ashan.		
Mehta V.K.	. Rohit Mehta. (2006). Principles of Electronics. New Delhi: S.	. Chand &	z Com	ınanv.

Mehta V.K., Rohit Mehta. (2006). Principles of Electronics. New Delhi: S. Chand & Company.

Mittal.G.K. (1993). Electronic Devices. G.K. Publishers Pvt. Ltd.

Ramakant A. Gayakwad. (1994). *OP - AMPs and Linear Integrated Circuits*. India: Prentice Hall.

Subramanyam A.(1997). Applied Electronics. National Publishing Company.

Theraja B.L. (2008). Basic Electronics . New Delhi: S. Chand & Company.

- Thevenin's theorem, Norton's theorem etc.,
- ➤ The students gain knowledge about the working principle of semiconducting devices such as p-n junctions, Zener diodes, Transistors, UJT, FET, SCR and working mechanism
- > The students will be able to understand the working of amplifiers, oscillators, multivibrators and operational amplifiers

		Semester - V						
Course Cod	le	Core Course-8	T/P	C	H/W			
22BPH5C2	Ι	COMPUTER PROGRAMMING IN C	T	4	4			
Objectives		ntroduce a computer language for solving scientific problems						
		laborate on different data types, such as simple variables, strir	_	-				
TI4 T		amiliarize students with writing programs using functions and	pointer	S				
Unit - I	Fundam	entals:- acter set – identifiers and keywords – data types – constants	woriok	olog d	aalarations			
		sions – Library functions.	– variat	nes – u	cciarations			
	-	r and expressions: Arithmetic operators – Relational	and Lo	gical o	operator –			
	_	ent operator – Conditional operator and Bit wise operator.		81001	Permior			
	_	but and output: The get char functions – the put char fu	nction -	- scanf	function -			
	_	nction – gets and puts function.						
Unit - II	Control	Statements and Arrays:-						
		ng statement: The if and if-else statement – nested if statem	ent-the	switch	statement -			
	_	statement.						
		statement: while statement - do-while statement -for state	ement –	break s	tatement –			
		statement.		1.				
	_	an array – declaring, initializing one dimensional	– two	aime	nsionai –			
Unit - III	Function	ensional arrays – reading and writing strings.						
Cint - III		a function – Accessing a function – declaration a functior	ı – fiinc	rtion pr	ototynes –			
	_	Arguments to a function – categories of function – Recu		-				
		Automatic variables – External variables – Static variables – Register variables.						
Unit - IV		and Structures:-						
	Pointers	- Pointer declaration - accessing pointer variables - point	ers and	one d	imensional			
		passing pointers to a function – call by value and call by reference						
	_	a structure – declaring structure variable – accessing structure	ire mem	bers –	processing			
		s – arrays of structures.						
Unit - V	Progran			1	 1			
	_	Programs – Average of set of numbers – Conversion of Celsium						
	_	n number – Roots of a quadratic equation – Add/Subtract tw es – Smallest and largest number of an array – Sorting						
		ng order using function –Arranging the names in alphabetical		18 III a	scending /			
Reference :			order.					
		4). <i>Programming in ANSI C</i> . New Delhi: Tata Mcgraw Hill P	ublishir	g Com	pany.			
· ·	•). Programming in C. New Delhi:Tata Mcgraw Hill Publishin			•			
•	,	•		•				
Ravichandra	ın D. (2002	2). <i>Programming in C</i> . New Delhi: I Edition, New Age Inter	national					
Stephen G.K	Kochen. (1	998). Programming in C. New Delhi: III Edition, Developers	Librar	У				
Outcomes		The students will be able to acquire skills in writing his pro-	gram fo	r simpl	e problems			
		in general, Physics in particular		_	_			
		The students will get the self-confidence to self-learning	any ot	her pro	gramming			
		languages and use them to solve numerical problems						
	>	Enhancing student's chance in the job haunt						

		Semester - V				
Course Code		Core Course-9	T/P	C	H/W	
22BPH5C3	CLASSICAI	L AND STATISTICAL MECHANICS	T	4	4	
Objectives	Physics To learn the Lagr	asic principle of properties in Classical Mo angian and Hamiltonian and their applications of statistics of molecules		s and S	Statistical	
Unit - I	Mechanics of a Syste	1				
	External and internal Conservation of angul Conservative forces	forces – centre of mass - Conservation of ar momentum – conservation of energy – examples – constraints – types of cogeneralized coordinates – generalized v	work-e nstraint	nergy s –ex	theorem- amples –	
Unit - II	Lagrangian Formulations:- Principle of virtual work – D'Alembert's principle, Lagrange's equation of motion for conservative and non conservative systems- applications – simple pendulum – Atwood's machine –Hamilton's principle – Deduction of Lagrange's equation of motion from Hamilton's principle.					
Unit - III	Hamiltonian Formulations:- Phase space –the Hamiltonian function H – Hamilton's Canonical equation of motion- Physical significance of H – Deduction of Canonical equation from a variation principle – applications – compound pendulum.					
Unit - IV	Classical Statistics: Micro and macro states – the mu-space and gamma space-fundamental postulates of statistical mechanics-Ensembles – different types –Thermo dynamical probability – entropy and probability-Boltzmann's theorem–Maxwell-Boltzmann statistics – Maxwell-Boltzmann energy distributive law – Maxwell-Boltzmann velocity					
Unit - V	distributive law. Quantum Statistics:-					
Cint v	Development of Qua Derivation of Planck	antum statistics— Bose-Einstein and Fe s's radiation formula from Bose — Eins rmi gas —Difference between classical and	stein st	atistic	s – Free	
Reference and	Text Books :-					
		Heat & Thermodynamics. New Delhi: S. O			npany.	
Gupta, Kumar,	harma.(2005). Classic	cal Mechanics, Meerut: Pragati Prakashan	Publish	ers.		
Gupta,B.D., S. Publishers.	yaprakash. (1991).	Classical Mechanics. Meerut: 9 th ed.,	Kader	nath	Ramnath	
Murray R.Sieg	(1981). Theoretical I	Mechanics. New Delhi: Tata Mcgraw Hill	Publish	ning C	ompany.	
		chanics, Mumbai : Himalya Publishing Ho		<i>5</i> -	1 2	
Outcomes	Mechanics ➤ The students gain	be able to understand the usage of Lagran knowledge to apply the principles of S of molecules and atoms				

		Sem	ester - V						
Course Cod	le	C	ore Course-10		T/P	C	H/W		
22BPH5C4		SOLID	STATE PHYSIC	S	T	4	4		
Objectives	> To underst	and the different t	ypes of bonding in	solids					
-	➤ To unders	and the magnetic	and dielectric prope	erties of crys	talline s	structi	ures		
	To acquire	To acquire knowledge of the basics of magnetic phenomena on materials and							
	various tyj	us types of magnetization.							
	To know t	ne properties of su	perconducting mate	erials.					
Unit - I	Bonding in So								
			c, covalent, Metall						
	_	••	um chloride molec						
		1 0	cohesive energy -						
			le crystal –evaluat	tion of Mad	lelung	consta	ant for		
	sodium chlorid								
Unit - II		ure and Crystal l		_					
			nit cell – seven clas	•					
			crystals – simple						
			nrloride, Zinc blend						
	_	Crystal Diffraction - Bragg's law - Experimental methods - Laue method -							
		l and rotating crys	tal method.						
Unit - III	Magnetic Pro		4		ъ:	4 •			
			nterials – Langevin						
			– Weiss Theory of						
	-	-	Domain theory of l	rerromagnet	1S111 — I	SIOCII	wan –		
Unit - IV	Dielectric Pro	f magnetic materia	118.						
Unit - IV		•	ation of insulators,	Samicondu	ctors c	ondu	ctors		
			actor – Polarizatio						
			c loss – Clausius						
			Normal and Anor						
	•	-	n of dielectric const	-	CISIOII	Lung	,0 1111		
Unit - V	Super Conduc								
,	-	•	s of Superconducto	ors – effect o	of magn	etic f	ield –		
			nt – thermal proper						
			ffect – applicati						
			for the occurrence						
	-	ation of Supercond		1		J			
Reference	and Text Books	•							

Arumugam M., Anuradha. (2002). Materials Science. Agencies Publishers.

Dekker A. (1985). J Solid State Physics . India: Macmillan .

Gupta H.C. (2001). Solid State Physics, New Delhi: Vikas Publishing House Pvt. Ltd.,

RaghavanV. (2004). Materials Science and Engineering, Prentice Hall of India Private Ltd.,

. .	-	
New	11	lhi

Pillai S.O.(2002). Solid State Physics. New Delhi: New Age International (P) Ltd.

Singhal R.L. (2003). Solid State Physics. Meerut: Kedarnath Ram Nath& Co.,

- The students will be able to understand the inter-atomic forces and bonds between solids
- > The students will be able to understand the behavior of solids with their magnetic properties
- ➤ The students gain knowledge about the superconducting materials

	Semester - V						
Course Cod		T/P	C	H/W			
22BPH5P1	GENERAL PHYSICS PRACTICAL - V	P	4	6			
Objectives	 To find the resonance frequency of series and parallel LCR of To determine the wavelength of most prominent lines in the by angle of diffraction To understand the concept and determination of self induct To know how run and execute a C program in the computer To compare the given capacitances, voltages and resistors 	e mercury ance	y spe	ectrum			
	Any Seven experiments 1. Series resonance and Parallel resonance of a LCR circui	t					
	2. Spectrometer -Grating – Normal incidence and Minimum	deviation	n me	thods			
	3. Comparison of capacitance and emf. – Spot galvanometer	r/BG					
	4. Determination of absolute capacitance – Spot galvanometer	er/BG					
	5. Hartmann's interpolation formula – Spectrometer						
	6. High resistance by leakage – Spot galvanometer/BG						
	7. Determination of L-Anderson's bridge and Maxwell's br	ridge me	thod				
	 Determination of band gap of a semiconducting diode an constant using Transistor 	d Boltzi	nanr	n's			
	9. Electro chemical equivalent and charge of an electron – 0	Copper v	oltm	eter			
	10. C Programming - Roots of quadratic equation and biggest number of an array						
Outcomes	 The students will be able to know about resonance for determination of LCR circuits The students will be able to determine the wavelength of me in the mercury spectrum by angle of diffraction using grating The students will be able to understand the concept and determine the wavelength of me in the mercury spectrum by angle of diffraction using grating The students will be able to run and execute C programs in the students will be able to run and execute C programs in the students will be able to run and execute C programs in the students. 	ost prom g terminati	inen on o				

		Semester - V						
Course Cod	le	Core Practical-6	T/P	C	H/W			
22BPH5P2		GENERAL PHYSICS PRACTICAL -VI	P	4	6			
Objectives	> To vario	 To study the characteristics of semiconducting devices and its application To know how to construct a power supplies, amplifiers and oscillators by various methods To understand the basic concept adding, subtracting, multiplication and division are done using integrated circuit 						
	Any Seven experiments							
	Zener diode – characteristics and construction of voltage regulator							
	2. T	Fransistor characteristics (CE mode) and construction of implifier Construction of Bridge rectifier and Dual power supply	_					
	4. H	Hartley oscillator and Colpitts oscillator – Transistor						
	5. F	FET characteristics and amplifier						
	6. L	logic gates using integrated circuits and discrete compor	nents					
		Verification of De Morgan's Theorem and solving a simp	ple Boole	an				
	•	equations						
	8. N	NAND and NOR as universal gates						
	9. F	RS and JK flipflops						
	10. A	Astable and bistable multivibrators - using 555 Timer ICs	S					
	11. 7	Adder, Subtractor, Differentiator and Integrator – Op.am	np					
Outcomes	diod They oscii The mult	students will be able to understand the characteristicles, transistor. y will be able to design and construct power supplied llators students will be able to understand of concept of additiplication and division through logic circuits. He	ies, ampl dition, su will also	ifier ıbtra o al	rs and action,			
		erstand, working of flip flops, multivibrator using integra						

	Semester - VI									
Course Cod	le	DSE-1	T/P	C	H/W					
22BPH6E1		INTEGRATED ELECTRONICS	T	6	6					
Objectives	➤ To know v	various number systems and conversion from one	type to	other						
	> To unders	tand the fundamental concepts of logic gates, cou	inters, re	egister	s, etc.					
	> To unders	tand the process of encoding and decoding in electrons	ctronic c	circuits	š					
		proficiency in the basic concepts of circuit anal	lysis inv	olving	g timer					
	integrated	ntegrated circuits								
Unit - I		Digital Electronics:-								
		ms – binary – Octal – hexadecimal – Binary ac								
		ompliment method) – multiplication - division – l								
		of logic circuits - using Boolean algebra - Demor	gan's th	eorem	ıs.					
Unit - II		al Logic Circuits:-								
		ites – X-OR gate -NAND and NOR as univers								
		cts method - Karnaugh map -Pairs, Quads and								
	-	Don't care condition - Product of sun	n meth	od –	POS					
	simplification.									
Unit - III		ng and arithmetic circuits:-		_	~					
	*	Demultiplexer – 1 of 16 decoder – BCD to decim								
		ders – encoder – Exclusive OR gates – Parity ge								
		ull adder– half subtractor – full subtractor – 4 bit	adder/su	ubtract	or.					
Unit - IV	Sequential Lo				C1					
		- D-flip flop – Clocked flipflops – J-K flip flops								
		chronous and ripple counters – BCD counter – I			nters –					
T T • 4 T T		- serial and parallel registers - ring and twisted i	ing cou	nter.						
Unit - V	/	D Conversion:-	. 11	1 1	11					
		ternal block diagram and working – astable, mor	nostable	and b	istable					
		– Schmitt trigger.		/ A .						
		le resistor network – Binary ladder - D/A conve								
		resolution – A/D converter – simultaneous con	iversion	- succ	essive					
	approximation	method – A/D accuracy								

Jain R.P.(1996). *Digital Electronics by Practice Using Integrated Circuits* - Tata McGrawHill(1996).

Malvino Leach. (1992). *Digital Principles and Application*. New Delhi: 4thEdition Tata Mcgraw Hill Publishing Company.

Millman J. Halkias C. (2001). Integrated Electronics. New Delhi: Tata McGraw Hill

Nagrath I.J. (1999). Electronics - Analog and Digital . NewDelhi: Prentice - Hall of India,

Roy Choudhury D. Shail Jain. (2003). *Linear Integrated Circuits*. New Age International Private Ltd.

Thomas L. Floyd.(1998). Digital Fundamentals. New Delhi: Universal Book Stall,

Vijayendran V., Viswanathan S. (2005). *Introduction to Integrated Electronics*. Chennai: Printers and Publishers Pvt. Ltd.

- The students will be able to know how primitives of Boolean algebra are used to describe the processing of digital signals.
- > The students gain knowledge in designing and analyzing the electronic circuits
- The students can analyze, design and implement combinational logic circuits

		Semester - VI							
Course Cod	le	DSE-2	T/P	C	H/W				
22BPH6E2		RELATIVITY AND QUANTUM MECHANICS	T	6	6				
Objectives	>	The aim of this course is to acquire sufficient knowled	dge in	the f	ield of				
	R	elativity							
	>	To introduce the concept of the dual nature of matter and	radiati	on					
	>	> To introduce Quantum Mechanics, the Schrodinger equation and its							
	aj	oplications and Operator formalism							
Unit - I	Relati	ivity:-							
		es of reference – Galilean transformation – Michelson - M							
		lates of special theory of relativity - Lorentz transfe							
	Contra	action – time dilation – Relativity of simultaneity – addit	tion of	veloc	cities –				
	variat	ion of mass with velocity – Mass energy relation.							
Unit - II		Nature of Matter:-							
		nature of radiation and matter - De Brogile wavelength -	-						
		le's wave length of an electron - Phase and group veloci							
		er's experiment - G.P.Thomson's experiment - Cano		y coi	ıjugate				
		oles – Heisenberg's uncertainty principle and its illustration	١.						
Unit - III		odinger Equation:-							
		quacy of classical mechanics - Basic postulates of qua							
		dinger equation – Properties of wave function – Probabili	•	-					
		function – linear operators – self adjoint operators – e	xpectat	tion v	'alue –				
		values and eigen functions							
Unit - IV		lar Momentum in Quantum Mechanics:-							
		al angular momentum operators— commutation rules for an							
		value of L_z – Eigen function of L_z and L^2 – Angular mom-							
		ved values of total angular momentum – Elementary ide	as of s	spin a	ıngular				
		entum of an electron.							
Unit - V		ions of Schrodinger Equation:-	c c• •.	1 .	1 (
		particle solution – Particle in a box – Potential well of			•				
		asion) – Barrier penetration problem – linear harmonic osc	illator	– zero	o point				
Defenence		y - rigid rotator.							

Beiser A. (1997). *Concepts of modern physics*. New Delhi: 5th edition, Tata Mcgraw Hill Publishing Company.

Brijlal Subramanyam. (1990). Mechanics and Relativity. New Delhi: S. Chand & Company.

Chopra K.K. Agrawal G.C. (2008). *Quantum mechanics*. Meerut: First Edition(1998). Krishna Prakasam Media(P) Ltd.,

Ghatak A. Loganathan. (2008). Quantum mechanics. Macmillan India Pvt. Ltd.

Mathews P.M. Venkatesan S. (2005). *A Text book of Quantum mechanics* . New Delhi: Tata Mcgraw Hill Publishing Company.

Murugeshan R. Kiruthiga Sivaprasath. (2008). *Modern Physics*. New Delhi: S. Chand & Company.

Pauling and Wilson. (2005).	Introduction to	quantum	mechanics	., New	Delhi: Tata	Mcgraw
Hill Publishing Company.						

Thankappan V.K. (2003). *Quantum Mechanics*. New Delhi New Age International (P) Ltd. Publishers,

- The students will be able to gain knowledge in the field of the special theory of relativity
- > The student will understand the ideas of the dual nature of matter and radiation
- > The students acquire knowledge in Quantum Mechanics and operator mechanism
- ➤ The student will be able to apply Schrödinger's equation to different problems and able to find the solution

		Semester	· - VI			
Course Code		DSE-3		T/P	С	H/W
22BPH6E3		NANOPH	IYSICS	T	6	6
Objectives	To introduce the concept of Nano materials					
	> To underst	and the basics of Nanom	aterials, Classification	and their	prope	rties
	To discuss the various types of quantum materials, Nanotubes and nanostructures.					
	To describe the applications of nanomaterials in various fields					
Unit - I	Introduction to Nanotechnology:-					
	•	anotechnology - Clas				
	Nanomaterials – Effects of surface area to volume ratio on the properties of materials –					
	Applications of Nanomaterials – Challenges in nanotechnology.					
Unit - II	Nanomaterials:-					
	Quantum dots – Quantum wires – Quantum well – Fullerenes – Buckminster fullerene –					
	Carbon nanotubes: Properties – Synthesis: Plasma arc-discharge method – Chemical					
	vapour deposition – Applications of carbon nanotubes. Nanocomposites – Nanohybrids					
***		and Nanoparticles.				
Unit - III	Preparation of Nanomaterials :-					
	Top down and bottom up approaches – Top down techniques: Ball Milling – Etching –					
		olithography. Bottom up techniques: Vacuum evaporation technique – Sputter				
TI24 TX7	deposition process –Hydro-thermal method – Sol-gel synthesis. Characterization Techniques:-					
Unit - IV		-	mtatian Datamainatia	C	.41	
		-ray Diffraction: Principle – Instrumentation – Determination of structural parameters.				
	Scanning electron microscope (SEM) – Transmission electron microscope (TEM) – Energy Dispersive X-ray Analysis (EDAX).					
Unit - V		of Nanomaterials :-	AA).			
Omt - v		cs — Nanophotonics -	Nanorobotics No	no mec	hanics	Rand can
						0 1
	engineered quantum devices - Photo-electrochemical cells - Gold nanoparticles catalystis.					
	Biomedical applications: Targeted drug delivery – Cancer therapy – Targeted chemotherapy – Radiation Therapy – Thermotherapy – Immunotherapy – Photodynamic					
	therapy – Gene therapy – Tissue engineering – Biosensing.					
	merupy Gene	merupy 113300 engine	oring brosonsing.			

Charles P.Poole Frank J. Owens (2008). *Introduction to Nanotechnology*. India: Wiley.

Chattopadhyay K.K. Banerjee A.N.(2009). *Introduction to Nanoscience and Nanotechnology*. PHI Learning Pvt. Ltd.

Fahrner W.R. (2008). Nanotechnology and Nanoelectronics. (Ed.), Springer

Nanotechnology. Trichy: JAZYM Publications.

Pazhani R. Thanmozhy E. (2009). Exploring Nanomaterials, Pooja publishers

Ravichandran K. Swaminathan K. Praseetha P.K. Kavitha P. (2019). Introduction of

Outcomes	>	The students will be able to understand the concept of nanomaterials and their advantages.
	>	The students familiarize themselves with the preparation of nanomaterials through
	>	various processes The students get an idea about SEM, TEM and EDAX

Course Code 22BPH6E4DSE-4T/PCCobjectivesLASER PHYSICS AND FIBRE OPTICST6CobjectivesTo introduce principles of LASER operation and their applications						
EMPERITIFIED IN (ETIBLE OF THE	5 6					
Objectives > To introduce principles of LASER operation and their applications						
To introduce the basic concepts of optical fibre and optic	cal fibre					
communication system						
	> To elaborate on the usage of LASER in Fibres					
	Fundamentals of LASER:-					
	Basic Principle of LASER - Einteins coefficient – condition for light amplification					
– Spontaneous emission – Stimulated emission – population inversion –	threshold					
condition. – Laser characteristics						
Unit - II Production of LASER:-	ılı v. I acam					
Principle, working and energy level diagram of Helium – Neon Laser – Ru – CO ₂ Laser – Semiconductor Laser	iby Lasei					
Unit - III Industrial Applications of LASER:-						
Laser cutting – Welding – Drilling – surface hardening – Hologram – R	Recording					
and reconstruction of hologram – Lasers in Surgery – ophthalmology						
treatment						
Unit - IV Optical Fibers:-						
Basic structure of an optical fiber – Acceptance angle – Numerical a	perture –					
propagation of light through an optical fiber – Theory of modes formation	propagation of light through an optical fiber – Theory of modes formation – Step					
index and graded index fibers - comparison - Losses in fibers - Disp	index and graded index fibers – comparison – Losses in fibers – Dispersion in					
fibers						
Unit - V Lasers in Communication:-						
Optic fibre communication – Light sources – Modulation methods						
	detectors. Block diagram of fiber optic communication system – Repeaters –					
	Measurement of numerical aperture and optical time domain reflectors –					
Advantages of fiber optic communication. Reference and Text Books:-						
Avadhanulu N. (2001). <i>An introduction to LASERS</i> , New Delhi: S. Chand & Company.,						
Thyagarajan K. Ghatak A.K., (1984) LASER Theory and Application, India: Mc Milla	ın Ltd.					
William T. Silfvast .(1998). Laser fundamentals, New Delhi :University Press, Pub	olished in					
South Asia by Foundation books.						
Outcomes > The students gain knowledge about LASER production						
The students familiarize themselves with the usage of LASER in the	industry					
and medical field	· ·					
transmission of data using fibres						

Semester - VI							
Course Code 22BPH6PR		DSE-5	T/P	C	H/W		
		PROJECT		6	10		
Objective	To introduce the basic idea of doing a project						
	To increas	ease the creativity of the students					
	Make the	students to think and enhance the depth of the subject knowledge					
	Any experimen	ntal or electronics project					
Outcomes	> The stude	nts will be able to get basic idea of doing	project and	increa	ses his		
	depth of s	subject knowledge by doing experiments					